

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course name					
Modeling of physiological processes	5				
Course					
Field of study		Year/Semester			
Biomedical engineering	2/3				
Area of study (specialization)	Profile of study				
Engineering of implants and prosthe	general academic				
Level of study	Course offered in				
Second-cycle studies		Polish			
Form of study		Requirements			
full-time		elective			
Number of hours					
Lecture	Laboratory classes	Other (e.g. online)			
15	15	0			
Tutorials	Projects/seminars				
0	0				
Number of credit points					
2					
Lecturers					
Responsible for the course/lecturer: dr inż. Jakub Grabski	R	esponsible for the course/lecturer:			
e-mail: jakub.grabski@put.poznan.p	I				
tel. 61 665 21 77					
Institute of Applied Mechanics					
Faculty of Mechanical Engineering					
Poznan University of Technology					
Prerequisites					
1. Basics knowledge in physiology.					
2. Skills of using software and basic p	programming.				
3. Understanding the need for learning and acquiring new knowledge.					

Course objective

To familiarize students with the basic methods of simulation and analysis of physiological processess.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

1. Student has extended knowledge of mathematics and computer science, necessary in biomedical engineering and useful for formulating and solving complex tasks related to biomedical engineering [K2_W01].

2. Student has knowledge related to IT systems in medicine [K2_W02].

3. Student has knowledge related to modelling biological structures and processes, including modelling and computer simulations in designing rehabilitation equipment [K2_W04].

4. Student knows basic methods, techniques, tools and materials used to solve complex engineering tasks related to biomedical engineering [K2_W10].

Skills

1. Student can obtain information from literature, databases and other properly selected sources (also in English or another foreign language) [K2_U01].

2. Student can use ICT techniques specific for the performance of typical engineering tasks. He/she can develop and use IT systems in medicine [K2_U07].

3. Student can perform computer modelling and simulations in biomedical engineering [K2_U09].

4. Student can evaluate the usefulness of methods and tools applied to solve an engineering task typical of biomedical engineering and observe their limitations [K2_U22].

Social competences

1. Student is aware of the validity and understanding of non-technical aspects and results of engineering activity [K2_K02].

2. Student can set priorities regarding the performance of a given task by him/herself or others [K2_K04].

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows: Lecture – final test.

Depending on the percentage of the student's performance on the tests, the following scores are awarded:

2 (not enough) <0 points; 50 points>

3 (sufficient) (50 points; 60 points>

3+ (positive plus) (60 points; 70 points>

4 (good) (70 points; 80 points>

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

- 4+ (good plus) (80 points; 90 points >
- 5 (very good) (90 points; 100 points>

Laboratory – credit based on:

- oral or written answer regarding the content of each laboratory exercise. To get credit, all exercises must be passed,

- final test - an individual task carried out by the student on his / her last class.

Depending on the obtained sum of points and resulting percentage, the following scores are awarded:

2 (not enough)	<0%; 50%>			
3 (sufficient)	(50%; 60%>			
3+ (positive plus)	(60%; 70%>			
4 (good)	(70%; 80%>			
4+ (good plus)	(80%; 90%>			
5 (very good)	(90%; 100%>			
Programme content				

Lecture:

- 1. Introduction.
- 2. Modeling of circulatory-respiratory interactions.
- 3. Modeling of mineral metabolism.
- 4. Modeling of carbohydrate metabolism.
- 5. Modeling of cholesterol homeostasis.
- 6. Modeling of gallbladder motor activity.

Laboratory:

1. Introduction to MATLAB.

2. Modeling and simulation of selected models of physiological processes with the use of MATLAB/Simulink.

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Teaching methods

- 1. Lecture: multimedia presentation supported by examples on the blackboard.
- 2. Laboratory: programming in MATLAB, performing tasks, discussion.

Bibliography

Basic

1. Praca zbiorowa pod red. K. Cieślickiego, T. Lipniackiego, J. Waniewskiego, Modelowanie procesów fizjologicznych i patologicznych, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2017, seria: Inżynieria biomedyczna. Podstawy i zastosowania (tom 1), zespół redakcyjny: W. Torbicz, R. Maniewski, A. Liebert, L. Granicka [in Polish].

Additional

1. Traczyk W.: Fizjologia człowieka w zarysie, PZWL, wyd. VI, Warszawa 1997 [in Polish].

Breakdown of average student's workload

	Hours	ECTS
Total workload	50	2,0
Classes requiring direct contact with the teacher	30	1,0
Student's own work (literature studies, preparation for	20	1,0
laboratory, preparation for exam) ¹		

¹ delete or add other activities as appropriate